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TECHNICAL MEMORANDUM X-53982

WIND DETERMINATION BASED ON EDDY TRANSIT TIMES
MEASURED BETWEEN FOUR NON-INTERSECTING LIGHT BEAMS

SUMMARY

The problem and the conditions imposed on it are identified in an
introductory section. To observe winds from whichever compass point they
may arrive, a symmetric arrangement of four beams is introduced. 1t con-
tains three free geometric parameters and offers 20 transit combinations
of three each, among which 16 can be employed for wind determination.
Twelve of them are put to actual use. They are divided into groups of
four, each of which is capable of detecting a certain class of winds sub-
ject to prescribed terms of confidence and accuracy. Class limits depend
on two transit time ratios and take the form of curves bounding off areas
within which those ratios may be said to refer to an observable uniform
wind blowing in a definite spatial region., With a suitably constructed
beam system, it may have any lateral direction. Allowable wind inclina-
tions vary with azimuth and the values adopted for the three geometric
and some interrelated parameters reflecting physical and other restraints
under which the system is to operate, Many of the accessible winds are
measured more than once by the three groups taken together.

The class (or admissibility) areas can be delineated without decid-
ing on the reference or observation height near which one may wish to
explore the air motion, However, being linked to parameters used, it
cannot be chosen completely at will, With the beam arrangement developed
and studied in the main body of the paper, upward and downward winds with
inclinations running from 0 to well over 30 degrees are accessible to
measurement, provided they move at reference heights roughly between 25
and 300 meters. The location and dimensions of the observation volume
can be determined as well,

Homologous systems arising by the same general method when applied
to different sets of parameters are capable of observation at lower and
greater heights, The calculation of the then measurable wind inclina-
tions is bound up with that of the admissibility areas which is laborious
and has not been carried out,



I. INTRODUCTION

To provide for the measurement of winds irrespective of direction
and slant angle is recognized as a major concern of crossed-beam atmos-
pheric experimentation (which substitutes the eddy or (mass) convection
speed for that of the wind). The instrumentation and data processing
phases are pursued elsewhere and need not be considered here, The
present report acknowledges the end product of the experimental chain,
namely, a number of eddy transit times,and asks the question: What wind
produced it? Evidently, these figures vary with the beam configuration
operative which, however, is not entirely at our discretion, It must be
shaped to answer certain requirements necessary to insure trustworthy
measurement,

The most pressing need is to keep the beams close together in the
region selected for observation, so that the air flow there can be con-
sidered uniform with straight cylindrical eddy paths representing its
direction. Their cross sections ought to be comparable to beam width,
preferably smaller than it., The volume of the region will be compact
as desired if the beam connections established by any and all eddy motions
that may occur in it are not too far apart to invalidate the assumption
of uniform flow. This sweeping requirement, however, cannot be sustained,
except perhaps if a large number of detectors can be brought into action,.
Practically, one is led to define a class of measurable winds. WNo restric-
tion as to azimuths will be placed on them in the present investigation,
Since nearly horizontal winds, as the most common kind, ought to be
detectable at any rate, it is the elevation angle that will be subject to
an upper bound beyond which safe measurement is precluded on the ground
that over large cross distances the wind vector cannot be expected to
stay reasonably constant. To a lesser degree this is also true in the
lengthwise direction; however, the restriction thus suggested on path
length receives added force by the desire to keep the traveling eddy
from decay which would destroy the root of the method. The path length
restriction may sometimes be violated when the cross distances are still
sufficiently small and then is dominant in limiting the class of observable
winds, ‘

The experimental error is assumed not to exceed #0.,1 second, Dif-
ferent ideas can, of course, be put forth on this head which will alter
the distribution of safely measurable winds, They will not affect,
however, the general reasoning followed in the paper. The transmitted
errors vary in inverse proportion to the eddy sojourn time in between
beams so that, in order to keep them reasonably small, a lower limit will
have to be placed on transit times, 1If it is put at one second, an
observational error of not more than 10 percent is held permissible.

As a corollary, no path available to eddy travel must have a shorter
length than the strongest admitted wind would cover in unit time, (To
be sure, this would not exclude even stronger winds if they happened to



blow in the directions of longer beam connections.) The need for main-
taining a minimum path length might prevail over the need for short
cross distances and then curtail the class of accessible winds in its
stead. ,

Outside the observation region, the wind may shift direction thus
giving rise to the recording of extraneous travel times that must not be
used for determining a wind vector., Such "forbidden" times can as a rule
be recognized by assembling all those that are consonant with transitions
available within the monitored volume. An outside transition would require
a time either too long or too short except in rare cases where the wind,
besides shifting, simultaneously alters its strength within a definite
narrow compass, To establish an "admissibility" roster is a major con-
cern of the investigation,

Sometimes spurious transits originating through what may be lumped
together as noise effects may be eliminated by the same criterion, How-
ever, since the times by which they are indicated do not arise from beam
geometry, they may on occasion be found among those admissible, Independ-
ent rules for weeding them out are desirable., One at least has already
been propounded on a statistical basis.

It is evident from the foregoing that several options have to be
exercised before arriving at the final figures for a beam configuration,
The numerical decisions made in the paper at certain crucial stations of
the development are not immutable, The arrangement described is but one
of many that are similar (or even dissimilar if the stress is on dif-
ferent classes of winds),

For ease of the mathematical formulation the beams and eddy paths
in what follows are replaced by their center lines. The outer reaches
of the admissibility region appear clearly marked off as a consequence,
whereas in physical reality the border is not quite so sharply defined.

IT. BASIC CONSIDERATTIONS

Observation of the three-dimensional wind vector requires a minimum
of three beams. Such a configuration has been studied in reference 1,*
where an arrangement best suitable for measuring horizontal winds arriv-
ing from a 90-degree azimuthal compass has been obtained, The mathe-
matical foundation was couched in general terms, so that an array of
non-horizontal winds accessible to measurement by the same arrangement
could also have been determined., It is tempting to use it as a base and,
by adding a fourth beam, to seek to widen the observational range to

"W. H. Heybey, Wind vector calculation using crossed-beam data and
detector arrangement for horizontal winds, NASA T X-53754, July 11, 1968,
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include winds from all directions, This line of approach, however, has
met with failure, as one might have anticipated, An arrangement more
symmetric than any one connected with that of reference 1 is more likely
to reach the goal,

Let us introduce a right-handed rectangular Cartesian system with
the x~ and y-axes on level ground, pointing forward and to the right,
respectively. The most symmetric layout of four detectors would place
them on these axes, each at the same distance, s, undetermined as yet,
from the origin, Their positions then are

1St detector (beam a): at Py(xg =s, yg =0, z5 = 0)

2nd getector (beam b): at P, (0,s,0)
1)

.

3rd detector (beam c): at P. (-s,0,0)

_4th detector (beam d): at Pg (0,-s,0).

The detectors are sitting at the corners of a square of diagonal length
2s.

In order to define a symmetrical beam system let us introduce a
parallel, smaller square whose center is on the z-axis at the "reference"
height z = h, Using a positive dimensionless parameter

0<As=sl
we may write the coordinates of its corner points as
P;(O,%s,h), Pé(-%s,o,h), Pé(O,-Aé,h), Pé(%s,O,h).
The beams a, b, ¢, d will then be fixed by the segments
P_P! P. P/ PcPé, pP.P!

a a’ b™'b’ d - d’

respectively, Note that if A were to be larger than unity they would
diverge, rendering it impossible to bring them close together near any
positive reference or "observation" height, Their direction cosines are
found as



(0 = =005, Qo = NdQz, O = sin y

B1 = -A0Oz, Bz = -005, Bz = Oz
< (2)
71 = 0Us, 72 = =NdOz, 73 = O3
Ksl = AoO=, 8o = 00U, o= = Oz
where

o = s/h, cotg ¢ = ol + A2, 3)

The acute angle { is the elevation angle common to the four beams and
so far a free parameter.

Figure 1 shows the top view of the configuration, while Figure 2
offers a look into the first octant of the Cartesian system.

In reference 1 no beforehand decisions were made either on detector
positions or on beam directions, Much of the flexibility granted thereby
and put to good use is lost with the present arrangement, However, this
lack in freedom is not really serious, largely on the grounds that now
gix transitions are available (instead of three, composing one single
transit triad), Selecting suitable connection line triplets out of the

(g) = 20 that are conceivable with four beams, in fact, makes up for the

relative rigidity of the geometry, in which are now only three free
parameters (s,h,A). It will later be seen that their values can be
adjusted such that winds arriving from a surprisingly large azimuthal
gsector can be handled by every transit combination employed, although
with horizontal winds, none of them is capable of monitoring a 90-degree
compass by itself, as is the single triad of reference 1, We will have
to be content with smaller sectors, which, however, must be wide enough
to cause the azimuthal reaches of the pertinent triads to overlap. Taken
together, they must cover the entire rose in order to achieve a prime
objective of the investigation.

Not all of the twenty transit groups of three each will actually be
used, Among those that are, the built-in symmetry relations greatly
reduce the mathematical labor involved in their study. Nevertheless,
before symmetry properties .can be invoked, some lengthy formulations
are unavoidable in dealing with four beams and six beam connections,



III, POSITION VECTORS, EDDY PATHS, RESTRAINING PLANES

The location of the points P, ... Py may be described by their
position vectors

£a=j._S, £b=is’ £c='isy _Ed:-is: (4)

where i, j, k are the unit vectors on the coordinate axes,

Of much greater importance are those particular points on the
beams whose connections are parallel to the unknown wind vector

V=1V, + jVo + kVs. (5)

It has been shown in reference 1 that for any wind direction there exists
exactly one such connection between two beams.* Thus, wind direction alone
uniquely defines the terminals of a connecting line whose length, if
divided by the measured transit time, yields the wind speed., As
another consequence, the analytic expressions for the terminals posi-
tion vectors are not dependent on wind speed; rather, they contain
the ratios of the wind vector components, and, in fact, are linear
homogeneous functions of them as given in reference 1, p, 13, For
needed clarity the number indices used there will be réplaced here by
letter indices (r; — xj, ri—»r* r, »r,, rs 5rf,, etc.)., With

L Li—~Iaghy L2 Ine t2 tba>
double-letter subscripts the first letter Benotes the beam the terminal
sits on, the second indicates to which beam the wind vector drawn
through it is pointing., Evaluation of the expressions in terms of the
detector coordinates (1) and the direction cosines (2) yields a group
of formulas:

- b Vo + Y, + Vo (14N)
+=—q

Zab T fa T om ZVL(IEN) F Vo(l-N) + Va0 (1+A2)

(equations (6) continued on next page)

"When the wind happens to be parallel to the parallel planes in which
they are contained, there exists none. Such winds must and can be
handled by other beam pairs.



b Vy + Vo + Vza(1-2)
Iha = 5 T g BV F Va(lon) + Vo0 (ihhd)

)
1l

e "5 T on BTN - Vo(+N) - Va0 (140D

. h Vi = Vg - Vza(1-2)
a5 L VL (1-N) - Vo(I+N) - Vo (1+A2)

g
(gﬂ

Vy + Vo - Vo (1+A)

* ll_
Ted T L Y on LN E VLN - Va0 (1+0D)

Vl + V2 - V3U(1'7\)

o o+
=dc  =d = s = V(1+N) + Vo(1-A) - Vo (L+A2)
(6)
h Vl - V2 + V30(1+?\)
r* =r, +— 5%
=da = Oz = Vi (1-N) = Vo(1+A) + Vo (1+A2)
Vl - V2 + VBU(l'?\)
o= + L o

=ad ~a O Vi (1-2A) = Vo(1+A) + Vo (1+A2)

Lac T &a Oz = ANVy + Vy

V2 - ?\GVB

Vl- 7\0V3
Ia = L T o BV, - v

Vi + AoV3

The unit vector components v; appearing in reference 1 have been
replaced here by the wind vector components V; = viV themselves,
Furthermore, O, B, ¥, ® are the unit vectors in beam direction



(@ = Qi + 0] + azk, etc.). Since 0z = B3 = ¥z = ds, the z-components
of two vectors with interchanged index sequence are seen to be equal

when V5 = 0, as is geometrically evident with horizontal transits. Four

The group (6) can be considered a main result, All things essential
can be derived from it, as indeed it embodies the geometric core of the
problem in that, from among the multitude of eddy courses present in a
given uniform Wlnd motion, it singles out the six to which a meaningful
path length and therefore a measured transit time can be ascribed,

The directed lengths of the several paths may be written as

¥

* f o v = .
Rop SEpa = & 2N TIATN F Voll-n) + Voo (1422)

~ba ~ab

v

E I * - —
Roc = Lcp = Lpe = 27 Vi(1-A) - Vo(l4+A) - Vo (1+A2)

. v
E O b
Ria = Zde " Eca = 2™ T F Va(lon - Voo (142) 2
5 . A
Ria = Zad ~ Zaa = "2 ¥ AN - Vol N ¥ Voo (FD)
Lo L) -Y-
Bac = Lea T Eac T m2hs INER
v
E R L _
Rog = Zap ~ Ipa = 2 ¥ 9wy

These expressions are gained by combined use of relations (2)
through (6). The path length vector, Bgn’ connecting beam m and n
(in that order) is either parallel or antiparallel to V, depending on
whether the coefficient at right is positive or negative, This distinc~
tion affects the sign of the transit time, TIf the uniform flow rela-
tionship is written as

RF =% ¥ (8)



the transit time 1%, is defined as positive or negative with eddies

. . . . %
moving from beam m to beam n, or oppositely so, in which case 1y, =
-Tgm < 0. As a practical consequence, one must, in correlating, delay
record n versus record m (Tgn > 0) as well as vice versa (Tgn < 0),

since of course the direction of the flow is unknown.

Eddy travel between separated beams requires a finite time, so
that record correlation can never exhibit a peak at time Téﬁ = 0,
Should such a peak arise nevertheless, one would first try to put its
presence down to extraneous circumstances and simply discard it, If
this is not warranted by a noise peak criterion, its occurrence may
suggest inadequate operation or undesirable flow properties (as over-
sized eddies or winds too strong); the validity of any other maximum
is likewise dubious in such cases.

Ideally, in each correlation curve, there is just one relevant
peak defining one single transit time.* If, after removing the noise
peaks, we are still left with several "wind" peaks, all but one of them
will have been caused by shifted winds outside the observation region,
The admissibility roster will point out the "true'" peak, If even
after consulting it, a multiple choice persists, the measurement will
have to be abandoned as ambiguous. In anticipating later results it
may be added here that, fortunately, many winds can be observed by more
than one transit triad, not all of which may use the pair with the
inconclusive correlation pattern,

Relations (7) and (8) establish the dependence of the wind vector
components present on the travel times registered and thereby furnish
the basis for answering the paper's main problem as it was formulated
in the Introduction. After calculating the three components, the
lateral direction of the wind is found from

v
tan ¢ = vf 9

where the azimuthal angle ¢ is counted counterclockwise from the positive
x-axis, The signs of V,; and V, indicate which one of the two supple-
mentary directions must be assigned to the wind. 1Its elevation angle

is defined by

Vs

—— 10
Jvz vz (10)

tan X =

z .
Occasionally there is none (in the circumstances mentioned in the
preceding footnote). Any particular beam pair (m,n) is unfit for
detecting certain winds,



where the root will be taken absolutely, so that the angle X is acute or
obtuse depending on whether the air is moving upward or downward.

On account of the symmetric beam configuration, the six parallel
connecting paths associated with a uniform wind ought to have inter-
related lengths, so that the eddy travel times cannot be expected to
be wholly independent of each other., Combining the expressions (7) and
(8) one can indeed show that, for any wind whatsoever, the relations
exist

1 1 1 1
T + T T 7%
ab cd bc d
2 1 1
T T T O %
Tac Tab Tda (11)
2 1 1
% 0 & T TE e
vd  Ted  da

If three travel times are known, the remaining three can be computed
from the system (11) which therefore could be used to check the results
obtained through back-and-forth correlation of the six record pairs.
Approximately, equations (11) ought to be satisfied and thus may serve
to remove unrelated correlation peaks, especially if the admissibility
roster leaves doubt in this respect,

Since the velocity components can be expressed in terms of transit
times, the equality (8) converts path length restrictions into condi-
tions which pronounce certain time sets as inadmissible and, as was
mentioned earlier, sometimes take precedence over the limitations imposet
by the physical necessity of restraining what had loosely been called
the cross distances of the eddy paths.

To fix ideas here consider an inclined straight streamline and the
vertical plane in which it is contained, 1In the operation region one
may presume the wind reasonably constant in lateral directions, more
precisely, in a plane, E, that passes through a given connecting path
and is perpendicular to the vertical plane. Wind shear will sooner be
expected in the direction of the plane's normal which has the cosines

ViVs

- »
JVE 4+ V3

V2V3

1
1 e
VvE e

1
€l_'v

< |

NVE 4 V2. (12)

€2

10



With horizontal winds (Vs = 0) this normal is pointing upward (in posi-
tive z-direction), 1In reference 1 therefore, the distance between
horizontal planes had been kept within prescribed bounds in order to
insure safe measurement, With inclined winds one would restrict the
"layer thickness'" in the analogous direction

€ = ie; + jep + kes.

It may then be defined as the (cross") distance between two 'restrain-

ing'" planes* E through the (k <» £) and (m «-»n) beam connections and
is given by

= + . * - ¥
Sgmn = T & (G, m Iy (13)

For deriving expression (13) consider, quite generally, two paral-
lel planes through arbitrary points P, and P:

1
o

€1(x-%7) + ex(y-yi) + ex(z-z1) =

[
(=)

€1(X"X2) + €2(Y'Y2) + 53(2'22) =
Their common normal through the origin,

.S AR

€1 € €5’

intersects with the two planes at points with the coordinates

€1 = e1(g 1), n1 = €=2(€ 1), t1 = es(e £1)

€2

€1(g o), na = ex2(€ ro), to = es(e ro)

* .
These are parallel to each other, as identified by two pairs of paral-

lel lines, each consisting of a beam connection and a normal to the
vertical plane.

11



where

L, T X +.ly]'_ +Ezi (i=1,2)

are the position vectors of P, and P,. The distance of the inter-
section points is

Jie - (12

i) - (€ 1122 + 2 + €2)

Il
-+
m

(x; - ro).

IV, FOUR BASIC TRANSIT TRIADS

To develop the beam system's capability of measuring horizontal
winds regardless of their direction is a foremost concern which will
guide us in selecting basic triads from among the twenty operative,

Let us begin, quite modestly, with winds arriving from about the
first quarter of the rose (p =~ 0° ... 45°), 1Inspection of Figure 1
suggests to employ the beam connections

(ab), (de), (db)

defining triad I, Indeed, with V5 = O, the first two are realized at
height h when ¢ = 45°, the last one is so with ¢ = 0°, Note that all
four beams are employed with these three transitions.®* Relations (7)
and (8) yield the equations

Vi (14A) + Vao(l=A) + Vso(14+22)

N
]
‘_‘\
t

VoD + Va(I-N) - Vso(I403) (5, = -7y (14)

4
I

- = = V,~NVy (sz = -ng)

*The single transit triad of reference 1 uses three beams only, although

in a highly asymmetric arrangement, to track horizontal winds arriving

from a 90° azimuthal sector.
12



which can be resolved for the wind components:

ro .M [N L 20-N A
Vl 1+7\2 [Tl + T2 + "!.’_3_d
__ s (1 20+ 1]
< V2 1+7\2 LTl T2 + T3‘ (15)
Ny, o.M 1(1 1
= 1+A2 0 \1, 715/ °

To prepare the way for concise formulations later on an abbreviated
notation has been introduced here:

* %*
Ty = Tl Tgy = T2 Ty = T (15a)

Since the 7., and therefore the V;, will be subjest to certain admissi-
bility conditions, the path length vectors sz’ Rdc, and R4y constitute

a vector set whose elements are bounded both in magnitude and direction,
Taken together they fill a finite space region which may be termed the
observation volume of winds accessible through triad I transits. Similar
remarks hold for all triads., The overall observation volume thus is a
composite body.

For dealing with the second half of the first quarter (p =~ 45° ...
90°) a triad II composed of the transits

(ab), (dc), (ac)

will be suitable. At height h a horizontal wind with ¢ = 45° again links
a tob, d to ¢, while it connects a and c when ¢ = 90° (Figure 1).

The formulas (8) and (9) here give

(2

4 -

&

(I+N)Vy + (1-N Vs + (I+A3)Vz0

4
2
o

]

&

(A+N)V, + (1-NVs - (L+A2) Vo (16)

o]
(¢]
it

Z

il

(W, + Vo),

<3
. 3
[¢]

13



which system resolves into

s A 2(1+A A
(ve=- s |- 2+ 200 2

1422 To T (17)
Goo . s 1 (.1_ _L
N I+A2 0 \13 713/’
where
Ty = T:b, To = Tzc, T3 = Tsc. (17a)

Winds with ¢ ~ 90° ,.. 135° will be handled by a transit triad III
which can be obtained either as above or else from the triad I. The
beams a, b, ¢, d used there will have to be rotated by 90° about the
z-axis to go into b,c,d,a. Mathematically, this is equivalent to keep-
ing the beams where they are and rotating the coordinate system by -90°
The original wind vector (5) then transforms into

V=-v; + iV, + kVs,

so that the former components V,;, V, have to be replaced by V,, ~V,.
From the solutions (15),

oo o2 [ 2040 1]
17 1422 | 1, To T3J
s VoA 2A-N A
é V2 - 1+A2 [ T To T3J (18)
S ;<_1_ 1
\3 l+?\20 T1 T3

14



where

— % -
Tl.—_TbC, To = 7T

ac? T3 = Tja . (18a)

The transits (bc), (ac), and (ad) are being used by the triad III.
In like manner, winds out of the sector ¢ »~ 135° ... 180° are

turned by 90° from those accessible by triad II. The triad IV appro-
priate for them will therefore consist of the transits

(bc), (ad), (bd).

Following the pattern (17), we find the velocity components as

(. = 2s _L+M__A_3>
1 T2 T

1+A2 Ta
I, T G SR € 5-,Y R
ﬁ V2 = 1+A% < Ta " T2 T3> (19)

with

£ <% i3
be? T2 = Ty Ts = T;d. (19a)

il
=

Ta

The *four triads are destined to monitor winds arriving from an
aggregate angular sector ¢ ~ 0° ... 180°. The associate four groups of
solutions are all of the same general form

a
Vl=al L_*._l_. +_2_’
T1 T3 T2

15



<
V]
|

b (L, LY, b2
St &Tl T3 T2’

1 1
V3=cl<;:-?;’

a propitious circumstance that allows the use of the same four triads
for ¢ ~ 180° ... 360°, This is seen as follows.

If a right-side wind vector is rotated by 180° about the z-axis,
the Vx~component is preserved while the two others turn into their
negative counterparts, The role of the beams a,b,c,d is taken over by
the beams c,d,a,b, so that, especially, any 1, goes into T = -1, (as

v . .
Tom = ~Tmp). From the transformed solution system:

' 1,1 a
Vy = -a; <}T +;T> - T
1 3,

AVl \V]

1 1 bo
T = —_— o = - —=
V2 = b <T'1 T’3> T2
1 1
V' = —— i

one concludes that among the remaining t's the relation must hold

@ T -ewo

because V5 = Vs. Since furthermore tan ¢ = tan (¢ + 180°) we have

V2 _ Ve
Vi Vi
which equality, together with 1L = -15, leads to the link
1
(b) ;%-+ ;% + = + . 0.
Ta Tz Ta1 T3
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From relations (a) and (b)

1 = | - .
Ty = —13z, T3 = =T31.

Thus, any left-side wind covered by the primed system can be written
as

< <
n= e

i i

o ]

[ =

+ +
alh. HIH
L

+ +
b el N

that is, it is also covered by the original system. If a certain set
of 7 defines a right-side wind, a left-side wind (the former turned
by 180° about the z-axis) will be described by the set -7,. It is
again seen that, in correlating, one must delay both ways. Since
four beams are employed, cross correlation of all six record combina-
tions is called for. The travel times extricated are conveniently
arranged in four sequences T4, 75, Tx:

I (ab), (db), (dc)

II  (ab), (ac), (dc)

IIT (be), (ac), (ad)

v (be), (bd), (ad).
Note that the middle time-term of IV is oppositely equal to that of I.
Tt is quite possible that some spaces are filled by several entries
of which one alone (and at most) ought to be in the admissibility region.
A moderately inclined wind will be discovered by the presence of an
admissible travel time triad and can be computed from the pertaining

solution group for its components,

Further discussion of travel times can concentrate on triads I
and IT that, taken together, are supposed to handle winds streaming

17



toward the first quadrant., The results are also binding for the
"rotated" triads IIT and IV (2nd quadrant)*, and, by simply inverting
the transit time signs, for the entire left half of the rose as well.

The last line of the system (14)(triad T) requires that
Vl- ?\Vg# O’

because otherwise the travel time Tgb(z T5), and therefore the associated
path length, would grow beyond all limits, clearly marking a physically

prohibited situation, 1In particular, V,; and V; are not allowed to be
both zero, so that the measurement of vertical winds is not feasible.
Since we had provisionally assumed that triad I transits are used when

ok

Vy < Vo =0,

the travel time 7, is positive, Continuing, we must dist;nguish between
two cases, If first Vs =z 0, 13, = 15 is also positive; 1, = 17, 1is so,
provided that

Vso(14+AZ) < =V (1+A) - Vo(l-2). (20a)

leatants

The opposite requirement™ ™ precludes the measurement of horizontal
winds, in which the main interest of the present section resides.
Secondly, with V5 = 0, 1, is positive by itself, while 15 will be
found as positive if

~Vz0 (L4AZ) < =V (1+N) - Vo(1-2), (20b)

a condition satisfiable by horizontal winds.

The relative positions of wind vectors and beam systems are the same
as with I and II transits,

doe
It requires different triads, or perhaps an altogether different
approach (as some preliminary investigations seem to suggest). To
deal with strongly inclined winds must be relegated to later work.

........

“It will be made in a later section,

18
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Turning to the triad IT which is supposed to govern winds with
Vo< Vy 20,

we see from the last line of the system (16) that TZC = 1o is positive.
The first two lines are identical with those of the system (14) so that
the restraining conditions (20a) and (20b) again apply. All travel
times are positive.

For right-side winds, they are also positive with triads IIT and
IV which apply to the second quadrant in substituting V5, -V; for Vg,
Vs. The above inequalities are to be written accordingly,

Conversely, all travel times are negative with left-sided winds
of a class that includes detectable horizontal winds, It is permis-
sible to disregard such times as long as conditions (20) are upheld
(which guarantee equal signs).

The conditions restrain the magnitude of |V3‘ and thereby limit
the X-ranges accessible to measurement., The mathematical formulation
simplifies consequent on the fact that, by expression (10) and the
solution systems, tan X depends on the (positive) ratios

T T
=22, Q=<2 (21)

rather than on the_Ti themselves. With the abbreviations

D=0Q3-Q, T=0Q,+0Qy-2 (22)

ale
we first rewrite the four groups of solutions” as

“The particular choice (21) of time ratios has been suggested by the
form of the expressions (15), (17), (18), and (19).
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With all four groups,

20

vy = - e = 2 +2D)
A 1
4 V2= - 1+?\2—T_2 (T - 27\)
.3 +32 75 7
1
(Vi = -2 =@+
A1
< V2 = - 752 P (2-AT)
V = 7\8 -1—- 2
L 3 1+ 2 15 o
(. =-D_ 1
Vl - 1+7\2 To (T 2?\)
s 1
< Vy = ~ T2 ;; (2+NT)
L 3 1+?\2 T O
4 Lo,
Vl 1+7\2 To (2 ?\T)
N 1
< Vo = - Tho = (2N
s 1D
s " THe 7 5
NVE + V2 = r_ L mEig.
NITS L

(231)

(2311)

(23111)

(231Vv)

(24)



Since Vz is also given by the same expression everywhere, a common
formula

tan X = + 1 D _,Dtany

, (25)

o N1+ JT2+4 JT2+4

describes the X-variation in the realms of the four basic triads.* The
differences lie in the correlation of the number indices with the double-
letter indices as spelled out by the identities (15a), (17a), (18a), and
(19a).

Since through solutions (23) the restrictions (20) assume the form

D<T+ 2 if Vs

1%

0

D>-T-2 if Vs

A

0,

upper bounds on the wind elevation appear in writing

|tan X| <=2 tan y.

TZ + 4

Once a value of  has been agreed upon, they are determined by the
azimuthal angle alone; for so is the quantity T, as can be seen by the
solutions (23).

A further significant conclusion can be drawn from these solutions,.
On putting them into the expressions (7) and (13), the time 15 cancels,
so that the path length and cross distance restrictions imposed on the
1; affect the values of T and D alone, that is, those of Q; and Q.
Hence, the admissibility range of the t; can now be determined, more
precisely, as a range of their ratios, Q; and Qx, representing a certain
area in the Q;,Qz-plane such that any point within it is defined by
travel times compatible with the physical requirements for trustworthy

“The beam elevation angle { enters from the second of the relations (3),
The sign depends on whether D/7, is positive (V5 > 0) or negative.
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measurement, The next section is preparatory to delineating such an
area, a task alleviated by the following observation,

From the four groups (23), it is seen that

v

0: Q3 = Q_']_ (> 0),

A

0: Q, 2Q5 (> 0),

Similar inequalities apply with left-sided winds, 1In any event,
upward and downward motion merely differs in that Q,; takes the role
of Q= and vice versa., Since this exchange does not alter the value
of T, any valid point Q,Qs on a line T = const. (Vs = 0) corresponds
to a valid point, Q& = Q=, Qg = Q,, on the same line, at which V5 = 0.
It suffices to develop the area in question for Vy z 0. That for

Vs = 0 is simply its mirror image with respect to the axis Q; = Qs
(Vs = 0) which is orthogonal to the lines T =Q; + Q5 - 2 = const,

V. UNIFIED TREATMENT OF PATH LENGTHS AND CROSS DISTANCES
(BASIC TRIADS)

All four solution groups yield formally the same expression for
the wind speed:

V =2 + V241 + tan®x = N N D2tanZy, (26)

V142 2

as follows directly from relations (24) and (25). With the latter the
positive sign applies in the case taken up here where V5 2z 0 (D z 0).

The path lengths pertaining to the transits in any of the four
triads may be written as

=1,V (i=1,2,3),

22



or, more explicitly, as

%* 1

1= ‘
Jie

JT2 + 4 + D2 tanZ
v

s

RY = NT2 + 4 + D2 tan2 27

> e an<y (27)
R = 22 L 75 14 ¥ 02 tandy

(e &

where the earlier correspondences between number- and letter-indices
can be used to return to a particular triad, Since by relations (3)

As Ah

e TV

the paths are seen to wax longer with less inclined beams, provided

cot v, (28)

the height, h, of the square aloft is kept fixed, This behavior appears

as evident geometrically. With V5 > O the path R§ is always shorter
than R7; Ré can be shorter or longer than both, or have an intermediate
length,

The solution groups (23III) and (231IV) were obtained from the
preceding two groups by rotations which cannot alter the measure of a
length, 1t is therefore sufficient to deal with the first two
transit triads when deriving the needed expressions for the cross
distances, We wish to learn besides which of them is largest in
given circumstances, and for this reason, is to be kept in bounds.

From the general result (13) the distances™

o . w5 - i
Sab,dp = £ & L

= ° N - £
Bb,dc = & Egp 7 Tac)

S %
—dc lr':'alb)

|
[
N
]
[

- 8dc,ab -

“The double signs have been removed as irrelevant in the present
context,
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have to be compared in the triad I of a «<»b, d«-b, desc transits, The
sum of the right sides being zero, one distance balances the two others,

Marked by a sign opposite to theirs, it is the one to be suitably
restricted,

With the aid of relations (6), (12), (10), and (23I), the B-expres-
sions can be rearranged to give

2)h cos X xT+1-x2) (24xT) _

( = - = -
®ab,db T2 (L) (T4 =~z
5 _ 2M\h cos X (xT+1-x%) (TZ-xT+2) _ 29
< db,dc 140 (T+1-x) (T3+4) = Bz3 (29
5 _ _ 2 cos X (xT+l-xZ)(T-2) (T-2x) _ _
| %de,ab THA2 (1+%) (T+1-x) (T244) = ~031

where

x=0Q, - 1. (29a)

To judge the relative wind layer thicknesses (cross distances), it suffices
to examine the aggregates

A _ 2+XT - (2'T)+TQ1
1+4x = 14x

B T2-xT+2
T+l-x

C =- (T-2) (T-2x) .

(1+x) (T+1-x)

From Qs 2 Q4 (Vs =z 0) one infers that T z 2x and therefore

T+Hl-x 2 1+x = Q; > 0,

The three denominators thus are positive,
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The numerator of B may be put into two forms:

v
Q

A

TQs-1) +2 >0 when T 2
TPexT+2 =
0.

(T - % x)2 + 2 - % x2 >0 when T

The first statement is true, since with T 2 0 and Q5 = Q,, the ratio
Qs is at least equal to unity. The second is based on the fact that
if T is negative the difference x = T/2 is so, too, but remains larger
than -1 (as Q;> 0). One concludes that B > O.
The signs of B, A, and C prove
Rule I: If T = 2, restrict the thickness |612|.

For A <0, C 2 0 then, With T > 2, however, C is negative, As a con-
sequence,

Rule ITA; TIf T > 2 and 2+xT > 0, restrict thickness |623|.
Rule IIB: If T > 2 and 2+xT < 0, restrict thickness |63ll.

With the solutions (231)

(30)

can ¢ = L2

i.e.,, to an azimuth smaller than 45° (depending on the value chosen for
<L).
Furthermore, since x = I%Q, the condition 2+xT > 0 may be written

T2-4
T
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and thus refers to the wind elevation. It must be sufficiently small:

if rule IIA rather than rule IIB is to apply.

The beam connections constituting the second triad define the
cross distances:

— . * o _ K
6ab,ac =& Gy - L)
6ac,dc & (Eac h l:--dc)
Bc,ab = € * Ege " Tap)s

whose sum is zero again,

For rearrangement we may use the same formulas except that (231I)
enters for (23I), 1In the final outcome

6ab,ac B12

6ac,dc = "%a23

Bdc,ab ~ 031

In other words, these distances, aside from sign inversion, are given by
expressions formally identical with those of the first triad, Owing to
this lucky circumstance, the rules derived above are also applicable with
triad II transits, consequently with all transit combinations introduced
as yet. Since the path length expressions are also formally alike for
the four triads, the admissibility area, insofar as it depends on physical
restrictions, can be established once for all in taking the first triad
as representative. This rather remarkable result, which saves a great
deal of intricate work, is doubtless due to the symmetry of the geomet-
rical arrangement,
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The individual triad, as we know, reappears as soon as the common
symbol T is interpreted in terms of azimuths, With triad II, e.g.,

2-7AT

tan ¢y = oy o (31)

an expression different from that holding with triad I (although the

critical value T = 2 again corresponds to tan @II = =)

The puzzling sign discrepancy in the two results found for By, ,ab
is founded 1n the different g-ranges for which triads I and II are
respon51ble. Where they overlap, the value of the distance comes out
as the same for the same wind,

For illustration, take @y = @1 = 45° corresponding to

Writing T-2x for D in relation (25), we may obtain a common value of X
by putting tan Xy = tan Xyp or

(=N x; = -\ - (1+2) -

From among the many elevation angles conceivable, let us select the one
associated with

X, = A X . <%an X = L
T 1-A° 11 1+A ﬁ 0(1+7\2)

“The last expression in the set (29) then gives

*

The same original expression was worked on with two different sets of
expressions for the velocity components (and thus might have transformed
quite differently, not ending up with just a sign exchange).
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27h A(A+2)2
831~ SR 3§1+A2)) (eriad 1),

while with triad IT values,

5..= - 20 cos X A(1+2)%)
31 1+)\2 3 (1+7\2) )

so that indeed the distance Bgc, ap has the same (negative) magnitude,
VI. (Q,,Q3)-PAIRS ADMISSIBLE WITH BASIC TRIAD TRANSITS

As was pointed out in the introduction, the straight eddy traces
in between beams should neither be too short nor too long, nor should
they define restraining planes too far distant from each other, These
requirements are physical in nature and must be held more important
than the need for error transmission limitation., Moreover, they
supply all the information necessary four bounding off the admissi-
bility area, Of course, if the error estimates (later to be made) run
too high, one would have either to cut back the area or to check into
and perhaps modify the numerical assumptions which, avoided so far,
must now be made.

The boundary sought depends both on T and D, that is, on wind
azimuth and elevation, The physical question therefore is: Which
"elevation"” D can be tolerated at any given "azimuth'" T? By defini-
tions (22),

T+2-D
Ql = 2
(32)
T+4+24D
Q3 = 2 3

suggesting an alternative formulation of the problem: Given the line

T=Q;+ Qs - 2 = const,,

which points Q,,Q3 on it are admissible?
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With Q3 and Q, plotted on the horizontal and vertical axes,

respectlvely, the admissibility area for V5 2z O is some portion of

the upper right quadrant in which Q; = Q5. According to relations

(32) increasing elevation at ¢ = const. causes the point Q,,Q5 to
slide down on the corresponding line T = const., whose inclination
angle is 135 degrees. However, there is clearly an end to this motion,
If D grows as large as T+2, Q; attains the value zero which is not
acceptable.

Observing that the path length R* increases beyond all bounds as
Q; approaches zero, we start with llmltlng it by a suitable largest
length, R, Since by the first expressions (27) and (32) the path R%
incregses with D, the solution D = D(T) which satisfies the equatlon
R* =R represents the largest value of D admissible at a given T, The
correspondlng smallest value, Q; = Q,(T), can be computed from rela-
tions (32), as well as the assoc1ated value, Q5 = QB(T) 1argest on
the given line T = const, An arc of the lower boundary curve® will be
traced out by these line terminals,

Actual calculation must await parameter identification; however, a
significant point related to the argument can be made without it,

With V5 = 0, the quantity Qs, by the second relation (32), is
larger than (or equal to) unity at least with T z 0 since D = Qs -
Q; =2 0. The path R§ here may always be taken as the shortest of the
three, Along any line T = const, it can be shown to decrease as D
increases, certainly as long as tan y = 279.5, By an independent
reasoning it appears as plausible that this condition will have to be
imposed on the beam elevation anyway; in fact, the value eventually
chosen for y does satlsfy it, Taking this for granted, we conclude
that the short path R3 is shortest along the lower area boundary, Its
variation along the arc R* R exhibits a surprising property: At T = 2
the path R% assumes a minimum length regardless of the values the still
undetermined parameters may have; they drop out of the equation for the
extremum, Tt can be shown that the lower terminal of the line T = 2 is
among those determined by the condition R% = R rather than by some other
of the physical restrictions, The result thence is meaningful,

At this station it becomes necessary to introduce a first numerical
value, Let us assume we wish to measure a 20 m/sec wind (= 40 knots)

*
It is composed of several arcs, as will be seen presently,

ek
"Farlier the g-range subjected to triad I transits had been loosely

defined as ~ 0° ... 45°, 1In accepting T = 0, we extend it down to
91 g
(= -arc tan A, since expression (30) decreases with T,
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even if it should happen to blow parallel to the shortest of all pos-
sible eddy tracks., Because the minimum transit time we are prepared
to admit is one second, the latter must be .assigned the length 20 m,
Thus, at the terminal T =2, D = D(2), two conditions have to be
satisfied:

R¥ =R, &% =20,

from which the unknown quantity 6(2) can be eliminated., A relationship
of three parameters ensues:

s

V102

J2(R+20)2 + 4(R-20)2 tanZy = 4OR. (33)

A definite value will eventually be selected for the largest path length
R we are going to tolerate, Nevertheless, the quantities

instrumental in shaping detector layout and beam configuration, cannot
be found as yet, Needed further information issues from the basic
demand to insure the measurement of horizontal winds at least up to the
azimuth 45°, Accordingly, by expression (30), one must see to it that
the T-range at least extends to

T =2 =2 (34)

Even if the A-interval is narrowed down to

0 < A

1A

1
% (35)

3
it

the minimum requirement is 10/3 = T.'
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With horizontal winds (Q, = Qs), we have T = 2x and therefore

831 = 0,
- _ Db T2+,
B12 = 023 T THZ 2(TH2) (36)

The T-function has a minimum at T = Zéfgji) < T*, If we accept, as a
second numerical limit, that cross distances should not exceed 16 m*,
the value of T* implies that the parametric factor should be chosen
below 11.3. Deciding also on a value for ﬁ,** we put

Ah

Tz = 1l m, R = 154 m. (37)

Relation (28) transforms the root factor in equation (33), which then
has the (almost exact) solution

N

tan | = R (38)

the beam inclination becoming ~ 26,5 degrees.
To the figures (37) and (38), we add, for convenience, a related

figure following from the equality (28):

As

NETSE

= 22 m, (39)

These results, to recapitulate, reflect numerical assumptions on
the shortest travel time (made for error containment), on the maximal
wind speed expected, on the largest cross distance and path length
allowable, and on the variation permitted for "the relative size,
characterized by A, of the squares on ground and aloft, The need for
overlapping ¢q-ranges (to measure horizontal winds arriving from any

In reference 1, as much as 18 m was considered tolerable.

“Clear-cut brackets for it are hard to come by. The figure chosen
seems reasonable and leads to the smooth result (38),
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direction whatsoever) has been taken care of, but no figure has been
placed on reference height which, by relations (37) and (39), would
finally identify detector positions, The admissibility area can be
developed without it.

Of it we so far merely know that some part of its lower boundary
follows from the condition R} = 154 m, If Q,(T) reaches unity, the
path RZ becomes the longest, and the condition is relieved by RZ = 154 m,
With the parameter figures as established, this happens at T =6, The
altered restraint causes a sharp break (discontinuous tangent) to appear
at the point §, = 1, §3 = 7. 1In proceeding to even larger values of T
(and Q,), one has to watch the cross distance 5.z which, by Rule IIA,
is the largest of the three here. At T = 6,32 already, this thickness
arrives at its limit (16 m), stopping further increase of T and con-
tinuation of the lower boundary. The end point has the coordinates
Qs = 6,40, Q, = 1,92,

The opposite end point, too, is not controlled by the condition
R¥ = 154 m, although it is still operative at T = 2 and values below,
The distance requirement ®;, = 16 m, which must be heeded according to
Rule I, takes over at T = 0.0516 (Q5 = 1.747, @, = 0,304), where the
lower boundary suffers another break, At T = -0.529* it reaches the
line D =0 (63 = 61 = 0,736) and its natural end, Any value below
T = -0.529 would violate the &,.-restriction (which also applies along
D = 0, where %,, takes the form (36)).

The upper part of the boundary, defined by the upper terminals of
the lines T = const,”* starts at the lower part's end point Qx = 6.40
(=q=), Q1 = 1.92 (=Q,)."™* The §os-restriction ruling there remains
responsible all the way down from T = 6.32 to T = 3,348, when 5,
becomes identical with &,-, and the upper boundary arrives at the
line D = 0 ending there (05 = Q, = 2.72). This straight line, inci-
dentally, is not part of the boundary; Figure 3 depicts one half of the
area only which continues across D = 0 into the realm of downward winds,
as was pointed out earlier. The total area is bounded by curved arcs
everywhere, which appear in symmetric pairs,.

o

Rule I keeps in force when T drops below the zero point,

ta ot

Here Qs = Qs is smallest and Q, = 61 is largest.

""There is only one point admissible on T = 6.3, which therefore is
both lowest and topmost,
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One gathers from the foregoing that horizontal winds can be
detected in the interval -0.,529 = T £ 3,348,
are found from expressions (30), (31), and two similar ones, depending
on which of the four triads is operative.

Table I gives a number of lower boundary points together with the

The associated g-values

largest elevation angle that can be measured at the pertaining azimuths,

and adds some other interesting information,.
growth of .% when T > 6,

TABLE I. Lower Boundary of Admissibility Area (Basic Triads)

T Qs Q; X Ré(m) B2 (m)
0,529 | 0.736 | 0.736 0 - -
-0.5 0.77 | 0.73 0.6 - -
0.4 0.89 | 0.71 2.5 - -
-0.2 1.14 | 0.66 6.8 - -

0 1.5 0.5 14 - -
0.05 | 1.74 | 0.31 | 19.6 - -
0.2 1.892 | 0.308 | 21.5 | 24.7 -
0.5 2.177 | 0.322 | 24.2 | 22.8 -

1 2.641 | 0.359 | 27.0 | 20.9 -
1.5 3.095 | 0.405 | 28.3 | 20.2 -

2 3.54 | 0.46 | 28.9 | 20.0 -
2.5 3.98 | 0,52 | 28.5 | 20.1 -

3 4.42 | 0.58 | 28,0 | 20.2 -
3.5 4,851 | 0.649 | 27.5 | 20.6 -

4 5.283 | 0.717 | 27.0 | 21.0 -

6.143 | 0.857 | 26.1 | 21.5 -

7 1 25.4 | 22.0 -
6.1 6.84 | 1.26 | 23.9 | 22.5 6.8
6.2 6.66 | 1.54 | 21.5 | 23.1 10.9
6.32 | 6.40 | 1.92 | 18.7 | 24.0 16.0

Note especially the rapid
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It may be thought unsatisfactory that at the lowest T's winds with
but small elevation angles can be handled, Here, however, the triad I
transits can be supplemented by those of the triad IV which, as we know,
are useable in the second half (roughly) of the fourth azimuthal quadrant.
The negative values of ¢ associated with Ty = 0 are equivalent to
¢py = 360 + @7. By solutions (23IV) and (23I)

o - Tyt 2 o T - 2
ST - 9o I"5%T. F 2
Iv ATIV 2 RTI + 2
so that
Ty = -T1-

Although with triad I the "azimuth" Ty = -0.5 goes with very small wind
elevations only, triad IV, at the "same azimuth" Tyy = 0.5, enables us
to observe slant angles up to 24 degrees, Clearly, the lowest upper
limit is X = 14° (at Ty = Tyry = 0). That in fact the arrangement is
capable of measuring considerably larger elevations will be explained
in subsequent sections,

The upper arc of the boundary is marked out by terminals of lines
T > 3.438, so that winds accessible at these azimuths to triad T transits
can never be horizontal,™ Table II lists a few of the upper arc points
and the smallest elevation angle measurable at the equivalent azimuths,
The longest path, R%E, reaches 154 m at T=6.3; larger T's would increase
it beyond that limit,

TABLE II, Upper Boundary of Admissibility Area (Basic Triads)

T 3.438 | 3.5 | 4 5 6 6.3

Qs | 2.72 3,10{ 3.86 | 5.02 | 6.07 | 6,40
Q. | 2.72 2,40 2,14 | 1.98 | 1,93 | 1.92
x° 0.0 4,0 |10.9 |15.7 |18.1 |18.7
E(m) | 87.5 89.1] 100 123 147 154

ate

Table I and the later Table II are applicable with all four triads of
the basic group. The same admissibility area holds for all of them.

““Horizontal winds are detected by triad II transits. One finds readily
that Ty and Ty = 4/Ty define the same azimuth,
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In computing the boundary the pertinent, i,e,, the most demanding
restraint, has of course been sought out and used. In the interior the
path length functions, being on T = const. meonotonic between boundary
points, cannot have values outside the realm 20 m .., 154 m. The cross
distance functions may exhibit a maximum as one learns by the usual
method., Numerical computations made along suitably spaced T-lines on
which it occurs have shown that, notwithstanding, the 5-values there
remain sufficiently small., From their slowly changing, continuous
character it is safe to infer that in between they will not exceed the
prescribed limit either. By Tables I and II the layer thickness |8s,]
can never be the largest and was not considered; with T > 2 the sum
2+xT cannot become negative as required by Rule IIB.

VII. ERROR ESTIMATES (BASIC TRIADS)

In investigating errors one will seek to set up expressions for the
worst that can possibly be expected -to occur within the admissibility
area, It will soon be seen that it suffices to consider one half of

it, e.g., where D = Q3'- Q; 20 (71 2 13).*
The worst experimental error was taken as

IAﬂ.l = 0,1 sec,
i

The analytic expressions for V, tan ¢, tan X contain the quantities
Tz, T, D; that is, they depend on the three 7y, which for the sake of
argument will (and can) be taken as positive (winds arriving from right-
hand directions), 1In a first approximation

oy | =~ Jay .
From the definitions (21) and (22) one deduces that

(T+2)d1, - Q3dT, - Q&d15

T2

dT =

5 5 (40)
Ddtp + Qyd7; - QzdTs

T2

dD =

*
Tt is depicted on Figure 3,
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These errors estimated for T and D increase when 7, decreases, The
smallest value permitted, 75 = 1, can be used if Qs = 1, for then

Ts 21, Ty 2 15 2 1. The pertaining points Q,,Q; are assembled in a
small region near the lower terminal of the line D = 0, Putting 15 =1
when Qs > 1 is prohibited as 715 would become smaller than unity. Rather,
one should take 75 = 1, so that 15, = Q5 >1, Also, 7; 21,

It is seen that the restriction on travel time indeed serves to
reduce the transmitted errors., A stipulation of this kind is necessary
for their appraisal in general terms. However, a measurement exhibit-
ing travel times less than unity need not be discarded out of hand if one
is willing to test its reliability by calculating the particular errors
involved,* The small denominators might be compensated for by suf-
ficiently small numerators.

From all four solution groups (23) the strength of the wind
emerges as the same expression,

As N T3+4 + D2 tan®y

NEEE T2 ’

VvV =

where

1

20, = eeme——
tan \lf = 0'2(1+?\2)

is ‘a constant, while T, D, and 1, are variables, Through logarithmic
differentiation and application of expressions (40), one finds that

2(T-2)d1p - QF(T-D tan®y)dty - Qi(T+D tan®y)d

av _ 1
vV 15 T2 + 4 + D® tanZy ’
On putting |dril = 0,1 and tan®y = 1/4, an estimate for the largest

possible strength errors may be set down as

"Before doing this one should of course ascertain that the Q;-values
found define an admissible point,
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D D
(_A_V> p 2lT-2l +eY T - 7| +5 [T+ 7]

= 2 .
1072 T2+4+%-

(41)
\V larg.

With D < 0 the roles of Q; and Qx are interchanged without altering the
expression, Systematic numerical calculations have shown that the per-
cent error estimate (41) is largest on the axis D = 0 of horizontal
winds where it can go up to 13 percent (near its lower terminal point),
Elsewhere, and more commonly, largest errors lie around 11 percent,

They are as low as 7 percent in some instances (where then the one or
other travel time somewhat smaller than unity may be tolerated, provided
that the ¢- and X-errors stay also low enough).

The "worst'" errors as defined presuppose: (1) maximum observational
Ti-errors committed such that (2) their contributions add up, and (3)
strong winds (small 7;'s). These three conditions will not often be
realized simultaneously. It does not seem worthwhile to cut off, for
example, the tip farthest at left of the admissibility area merely to
avoid the relatively large strength error that might occur there in a
combination of unfavorable circumstances.” 1In addition, the wind
pertaining to the tip can be measured both through triad I and triad IV
transits; in the latter case the worst conceivable error was found as
~ 8.5 percent,

Although the expressions for tan ¢ = V,/V; are different in the
four solution groups (23), the differential
dgp = * 2 dT
¢ A
is essentially the same, so that one error evaluation only is needed.

With the aid of the first relation (40), we may write the worst-error
estimate as

1 Q + Qs+ QF +05
(Am)larg.'w 575 T2+4 " (42)

It clearly holds with D > 0 and D < 0 alike, Values for admissible
points range from ~ 2 to ~ 12 degrees and should not cause concern,

"If all conditions are met with except that ATy =-ATs, the error already
reduces to 11,7 percent,
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As to the elevation angle, relations (25) and (40) yield

1 D(2-T)dt, + cg~§['r((g3-1)+2]d~cl - <3§['1?(Ql-1)+2]<iir3
T2 VT (12 + 4+ 0

so that

. Ip@-D| +Q3|T@s-D+2| + Q5|T (@ -1)+2]

X =31
( >1arg. 10T2 ’T2+4 (T2 + 4 + %?)

. (43)

Evaluation of this formula (which is applicable with D z 0) yielded
estimated error values often insignificant and at most ~ 4 degrees,

VITI., ADDITIONAL OBSERVATIONS THROUGH THE BASIC TRIADS

On inverting conditions (20) a number of nonhorizontal wind arrays
should be found accessible to measurement, As was shown in general, the
investigation can be restricted to triad I transits,

Condition (20a) applied with V5 =z 0, Let us replace it by the
opposite requirement:

(I+N) V=0 > =(1+N)V, - (1-N)Vy > 0,
so that, from the two first limes of system (14),

Ty =T <0, Tgc =15 > 0,

The third time, Tgb = 15, can be either positive or negative; no condi-
tion for it exists., 1In either case Q; and Q5 are of opposite signs.

Inverting the requirement (20b) associated with V5 = O,

(1+A2)Vz0 < (I+N)V, + (1-N)V, < 0,
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we find that

%

de = T3 < 0, T, =11 >0,

v ab

Again, whether we take 7, positive or negative, Q, and Q- have dif-

ferent signs, The admissibility area will be determined with Q,; < O,
Qs > 0; it has a symmetric counterpart mirrored at the axis D = 0,
so that the former Q; assumes the role of Q5 and vice versa,

Q, must not approach zero indefinitely, We will have to satisfy
the condition

«/T2+4+£%2E

*=
RS = 22 TS < 154,

Spot checks with T = 0,1,2,3 have shown that if Rﬁ = 154, one of the
thickness conditions is always viclated, One may expect this to be
true for all positive values of T,

In carving out the admissibility area for T < O one must consider
the earlier expressions

2+T -1
A =
Q1
24T (Q3~1
B =
Q>
o = LT-2) Q>-Q3)

'QIQ3

whose denominators are all positive. Hence, A >0, C < 0, Depending
on whether the B-numerator

2+ T(Qs-1)

is larger or smaller than zero one will have to restrict either ‘631|
or |612]. The area is depicted on Figure 4, where those parts of its
boundary where a path length restriction is dominant are also indicated,
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The worst transmission errors estimated to occur within the area
go up to 12 percent in strength, to 7 percent in azimuth, and to
5.5 degrees in elevation angle, The error structure seems acceptable,

Since the useable T-range was determined as
-6 =T = -0.3,

the system (23I) tells that with 75 > 0 the wind is directed toward the
fourth quadrant blowing upward (downward) with D >0 (D < 0), Opposite
winds are present when 15 < 0., The same conclusions can be drawn from
the system (23II). Both the triads I and TII thus measure an additional
class of winds approaching the fourth and second quadrants, One finds
that the azimuthal validity ranges overlap in large measure. However,
V2 can never become zero, nor can V,, unless A is relatively large,
That is, the triads are, as a rule, not geared to the measurement of
winds whose horizontal components are either parallel or antiparallel
to one of the coordinate axes, Since the same is true of the triads
ITI and IV that govern overlapping azimuthal reaches in the first and
third quadrants, the upper bound of the measurable elevation angle
remains at its rather low value (= 14°) for winds with ¢ ~ 0° (90°)

and @ ~ 90° (270°).* To see its rise with other directions let us
compare upward winds amenable to I, II, and III transits, provided that
with the latter 14 < 0, 75 >0, 73 > 0. By the sets (23I), (23I1),
(23111) equal azimuths require that

T T

1 T =% Tppp = T

The values of X defined by the intersection points of the line Tyyp =
const, with the area boundary give the lower and upper bound of the
X-range available at the pertaining azimuth, Some of them are listed
in the following table, For easy comparison the corresponding brackets
with triad T and II transits are taken over from Tables T and TII.

.

“A remedy for this is offered in the next section,
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TABLE III. Measurable X-Ranges (Basic Triads)

THI -0.8 -1 -4/3 -3/2

x;II 23.6 ... 33.2 ] 22,2 .., 33.7 (21,4 ... 34.0 | 21,1 ... 34.0
x; 15.7 ... 26.1 | 10.9 ... 27.0 0 ... 28,0 0 ...~28.5
x{I 0 ...~26 0 ... 27.0 0 ...~28 0 ... 28.3
E— -2 -8/3 -3 -4 -5
X7r7]20.9...33.8|21.1... 33.7/21.5...33.4(22.2...32.6|22.9...31.8

x; 0...28,6/] 0 .., 28,3] 0...~28°l 0 ...27.0 O ...~ 26
x;I 0...28.,6] 0 ...~28.5/ O ... 28°[10.9...27.0]15.7...26.1

It appears that at all azimuths permitted by added III-transits one
can measure eddy tracks with elevation angles from 0° to well over 30°,
In many instances a wind can be obtained in two or even three ways,
for instance, if it blows at the azimuth Tyyy = =4 (T =1, Typ = 4)
with an elevation angle around 25 degrees., With X > 28,6 degrees but a
single observation can be made,

IX. AUXILTARY TRIADS

Among the twenty triads of beam-connecting eddy paths, four use the
same beam thrice, Being parallel, these connections are coplanar, 1In
taking the transits (ab), (ac), (ad) as examples, the analytic corollary
is recognized as the linear relationship of the transit times given by
the second of the equalities (11).* The V;-equations which one could
set up after the pattern of the systems (14) or (16) are therefore
underdetermined and the four triads must be dismissed as unfit to
deliver results,

“With other such beam connections the relationship can be obtained by
rearranging system (11),
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The quartet of what may be called the cyclic triads, as (ab), (bc),
(cd), is beset by different shortcomings, less unavoidable in character,
It could be used for measurement, but not safely so when Ty > 0,* since,
with the parameter values as chosen, it does not possess an admissibility
area. Either restraining planes remain too far apart, or one of the path.
length conditions is violated.

By the solutions (23) the argument T = 0 defines winds whose lateral
components are roughly parallel to the x- and y-axes. The elevation
angle here stops near 14 degrees, Wishing to improve on that value by
employing additional "auxiliary' triads we have to reject those four
that include both (ac) and (bd) transits (running between beams parallel
in top view). In examining their admissibility range one finds that at
least one confidence requirement is not fulfilled for the Q,,Qs-pairs
that correspond to the above lateral components.** This leaves us with
a last group of four transit triads:**¥

Figrad

AL des b, deec, c b

ATl des b, desa, aesb

ATIT  a«>c, a¢-d, desc

ATV a ¢, a¢-b, b «—c .
In dealing with them one will follow the same steps as were taken when
studying the basic triads I, II, ITII, and IV, It seems excusable, then,
to suppress much of the detail work which the reader, if so inclined,

can supply by himself,

The solution groups associated with the four auxiliary triads emerge

as
" Other possibilities have not been probed into,
X%
These ("unilateral) triads make use of only one pair of beams in
alphabetical sequence, They are discussed in the next section,
ke

They forgo the use of one beam each ("three-beam'" triads),
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V3

(D - 2N

(2 + AD)

- 2N

T1

T2

T3

T1

T2

T3

T

T2

3

T1

T2

T3

i

I

*

ac

wls

Tbc

(44AT)

(44ATT)

(44ATII)

(44ATV)
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It will be remembered that, if an eddy train moves from the beam
first named in the double-letter subscripts to the one named second, the
travel time is counted positive, otherwise negative. By imposing con-
ditions on Vx analogous to the inequalities (20) such that |V3] can
become large one arrives at the conclusion that the three travel times
pertinent to a given triad must either be all positive or all negative,
Experimental values for them must now be arranged in four more sequences
T1y To, T30

(¢b), (db), (dc)
(da), (db), (ab)
(de), (ac), (ad)

(ab), (ac), (be).

After establishing an admissibility area for Q, and Qs, one.can deter-
mine whether or not one of these sequences marks a valid measurement,
If so, the wind vector components can be computed from the pertaining

solution group. Any sequence not exhibiting equal signs can here be
eliminated at once,.

In the sets (44) the symbols D and T have the former meanings (22),
However, their roles are interchanged. D is now equivalent to an azimuth,
while the allowable T-variation gives the elevation range at D = const,,
since

tan‘x’:iw
ND2 + 4

. (45)

Owing to this interchange the operational domain of an auxiliary
triad is radically different from that of a basic triad where it
comprises upward horizontal and downward winds that arrive, roughly,
from a certain g@-compass adjacent to one of the coordinate angle
bisectors. Consider the triad AI, for example. One can show that,
with admissible values of Q; and Qs, the quantity T is always
positive.* By contrast, D can be negative as well as positive

*Horizontal winds, incidentally, are therefore not measurable by
auxiliary triads when the t; have equal signs, Unequal signs have
been tried also. Indications are, however, that if such times are
measured, no confidence can be placed in wind determination,
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(and zero), Contemplation of the solutions (44AI) reveals that the
triad AT is capable of monitoring upward (downward) winds arriving
from forward (backward) directions provided that 1, > 0 (715 < 0).
Opposite winds are captured by AIl-transits. The first two auxiliary
triads then combine to handle eddy paths whose parallels drawn through
the coordinate origin group around the x-axis., Those grouping

around the y-axis are observable by the triads AIII and AIV, each of
which carries half the load in a similar manner., These results are
encouraging, for precisely those lateral directions are favored in
which we wish to extend the elevation angle range. By contrast, the
last quartet excluded in the survey of triads can be shown to favor
the bisector directions,

Unified travel path and layer thickness restrictions again deter-
mine the bounds of the admissibility area. Wishing to explore them
along the diameters D = const, (¢ = const,), we formulate in terms of

D=Qs-Q,and T =Q, +Qx - 2.

22s D2 + & + T2 tanZy

%
Rl =
N 1422 T+2-D
RS = 25— D2 + 4 + 12 tan2y (46)
NI+A2
R = 22s ND2 + 4 + T2 tany
3 2+D

N N1+A2 T

5 _1 _’h (D% + 4 - T2)(D2 + 4 - DT)

( C12 21+7\2 [ T2 tan?
(T+2-D)(DZ+4)J1+——55:[ﬁ

_1 h D2 + 4 - T2)(D2 + 4 + DT)

( B23 = 5 To2 e (47)
(T+2+D)(D2+4)j1+?il;i

5 __ 2N (D2 + 4 - T2 (D2 + 4 + 2T)

L >t 1A% T2 tanZ®
(D2+4)[(T+2)2-D2]jl +—Wi
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‘where, as agreed upon earlier,

tanq;=%, B gy Ay,

2
J1E A

The number indices refer to the transits considered in the various
triads as they are spelled out in the t;-definitions affixed to the
solutions (44A), The formulas are applicable in all four transit

groups alike, so that again one single admissibility area is relevant
for all auxiliary triads,

Appraisal of the relative magnitude of the layer thicknesses laikl
leads to the following precepts:

Rule III:
IfDz20and D2+ 4 - DT <4 > 0 restrict 4 021 .
<0 823
Rule IV:
If D =

0 and D2 + 4 + DT {jz 8 restrict-{ Zi; .

The value of |Sik
stances indicated.

at right is the largest of the three in the circum-

It was found that, before the 3;.-restriction becomes operative,
a path-length condition always limits the admissibility area, one-half
of which is depicted on Figure 5 (D > 0). The other half (for D < 0)
is symmetric to it with respect to the axis D = 0, One can show that
in the interior the travel paths and layer thicknesses remain within the
prescribed bounds. However, a small part of the area has been cut off,
since, in it, the azimuth error can become uncomfortably large,

The worst possible errors are estimated in the manner adopted
when dealing with the basic triads, With D > 0, it yields the expres-
sions®

ﬁFigure 5 shows that, within the admissibility area for D > 0, Q5 > 1
always. Accordingly, the original denominator quantity T, has been
replaced by Q5 everywhere,
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v 1 2|1-8| + QZ|4D-T| + Q5|4D+T|
V /larg. 10Qx 4(D2 + 4) + T2

L les-qi] +aF + 3
(A¢)larg. "~ 5Q4 D2 + 4

1 2[D2 + 2(T+2)] + Q2|D2 + 4 + TD| + QZ|D2 + 4 - TD|
(Ax)larg- - Qs 2 2 2 ’
ND2 + 4 [4(D2+4) + T2)

It is readily seen‘that, when Q, and Q5 exchange roles, as they do
with D < 0, the error estimates remain numerically unaffected.

On D = 0 the worst foreseeable azimuthal error appears as

(&) = Qs/10,

larg.

and, if it is to be limited to 15°,* requires that Qs must not grow
beyond 2,618. In a like manner, the admissibility area is to be cut
back for other small values of D (£ 0.4).

The worst strength error estimates range between 7 and 12 percent.
The X-errors remain below 7 degrees and can be as little as 1 degree.
These figures appear acceptable,

With positive values of D and 7, the auxiliary triad AT monitors
upward winds blowing into the first quadrant from azimuths not too
1arge.** Expression (45) here applies with the positive sign, so that,
at a fixed azimuth D, the positive angle X increases with T. On Fig-
ure 5 it grows from the lower boundary to the upper boundary when one
follows a line D = const. For some of these lines, the lowest and
largest values are listed in the table below, The right half-columns
give the corresponding values at the same azimuths*** yhen the basic
triads I and III are operative, They are taken from Tables I and III.

3k

In reference 1, Ap = 16 degrees was considered tolerable,

alants
Ww

Vy, = 0 obviously cannot be obtained with D > 0, 75 > 0,

Fedkede
By the sets (44AI) and (231I) an azimuth described in AI by D = ¢ is
given by T = ¢ in I, The value ¢ = -0,2 is included, since it also
can be handled by the triads. It designates a wind blowing into the

fourth quadrant at a negative azimuth of small magnitude,
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TABLE IV

Elevation Angle Ranges Measurable by Triads AI, I, and III

D -0.2 0 0.2 0.5 1

Xe 7.2 0 7.6 0 7.2 0 9,1 0 11.9 0

X°® | 40,2 | 6.8 | 39.0 | 14 | 40,2 | 21.5 | 38.9 | 24.2 | 32,1 | 32.6

X° 14.6 0 16.7 0 19.5 0 21.1 10.9 | 23.5 | 15.7

| 29.4 | 33.7 | 28.6 | 33.8 | 29,9 | 34.0 | 32.1 | 33.7 | 33.6 | 33.2

While the three-beam triad is not suitable for detecting horizontal winds

(X = 0°), its use quite conspicuously enlarges the top elevation acces-
sible near D = 0 (¢ =~ 0).

Table IV in essence is valid for any pair of triads intended to
work on (more or less) the same winds. Inconsequential sign inversions
may become necessary, a trivial case being that of downward winds
(X < 0), when, for example, triads AII and T are combined., Triads AT
and IV operate on upward winds arriving from the left front side, Here,
D < 0 in the set (44AI), so that in Table IV the head row must be given
inverted signs.* This is also necessary when combining triads ATII and
II whose common targets are upward winds blowing into the first quadrant
at azimuths not too small, D = 0 here corresponds to a wind with

¢ = arc tan l

A

(close to 90° when A is sufficiently small). Triad II can handle such
winds between 0 and =~ 14 degrees elevation angles, while ATIII extends the
range up to at least 39 degrees.

ot

D = -¢ then corresponds to T = c in expressions (231V), where 71, has
to be negative; otherwise, IV would monitor winds from the right
back side,
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Analogous correspondences hold with any other pertinent combination
of auxiliary and basic triads; The three-beam triads do provide the
service expected of them, Horizontal winds, for which they are useless,
are handled by the basic triads.*

X. CONTROLLING TRIADS

The striking similarity of the solution groups associated with the
basic and the A-triads seems to be bound up with their common use of two
sequential transits, Deviating forms were found when dealing with the
"eyclic" triads (three sequential transits) and the "unilateral" triads
(one transit only between beams in alphabetical sequence). The latter
constitutes a useable second group of auxiliaries, Although it does not
extend the range of safely measurable wind vectors, it may be utilized
to check results (controlling" triads). Adding another set does not
appreciably increase the evaluation burden, since the main part of it,
namely the back-and-forth correlation of the six record pairs, must be
carried out in any event, After including this group twelve of the
sixteen meaningful combinations of three transits each have been put to
work.,

The V; solutions related to the controlling auxiliaries exhibit a
pecularity which ought to be rooted in features of the beam geometry
that are hidden in the formulas (7) so far used to obtain solution
systems in a routine manner. To bring them out we note at first
that any two beams, m and n, are contained in two parallel planes
whose common normal ("binormal") is in the direction of the vector

Np =Xy
where the coefficients _,; and v; are the direction cosines of the beams
m and n, respectively,

Of the parallel eddy trains carried along by a wind of uniform.
velocity V a single one, as we know, is capable to connect the beams m
and n, The terminal points of the connecting line are given by the
position vectors (6) which have the general form

*

With a carefully contrived different arrangement of three beams, such
winds can be measured, although in a limited range of azimuths only
(reference 1),
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:
AH

An eddy moving from m to n will cover the distance

* * ¥

AX r r
- —nm —mn

whose direction is parallel to the wind (i.e,, the time Tﬁn needed for
the movement is positive). The projection of the movement onto the
binormal, namely,

N
r..vf —mi
A_ IN ‘)
~mn
so that the relation exists
_:.E(r-r).N =V-.N (48)
g —n ~m —mn —  ~mn

ate
"

where the above expressions for rp, and E;m were inserted into the
original triple scalar product

to obtain the simplified version at left,
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This derivation of a direct equation® for the velocity components
is mainly given here to emphasize the dominant role of the binormal.

Winds blowing into the first quadrant will in general move from

a toc, fromd to b (Tzc,wﬁb will be positive), The binormal expres-

sions associated with these beam pairs,

20’@3 (?\_i_ + _j_)’
Ny, = 2005 (i - AD,

define vectors of equal length which are orthogonal to each other and
parallel to the ground plane,

The third of these peculiar properties causes the right side of
equation (48) to lose the component Vs (its coefficient becoming zero).
As a curious consequence, the components V, and V, are determined by
the (ac)- and (db)-transits alone, They suffice for measuring the
horizontal wind component; however, as will be seen shortly, admis-
sibility criteria limit the ¢@-range and prevent the observation of
winds purely horizontal.

Adding to the (ac), (db) transits, first the (ab)-connection,
secondly the (dc)-connection, in order to compute the CI- CII-groups,
we arrive at the solution systems

r 2hs 1 J
VJ_ = - 1+7\2 T_2 (7\Ql + Q3) Ty = T:c
_ 2As 1 %
< Va = - IH2 T, Q1 - ) T2 = Tgp (49€T)
2 1 *
\oVs = - 755 ™ (1 -Q; - Q) T3 = Ty

oL

w
It was used to write down the set (12) in reference 1,
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2hs 1
(V2= - e T, (At e TS T
2h 1
ﬂ Vs = = 1+?\2 ?2- (Ql - 7\Q3) To = T:;C (49CII)
2x 1 3
(V3= - T, @t - D T3 = Tgp

Since with both systems

Q]_ - ?\Q3

tancp=7\Ql+Q3,

the admissible ¢-ranges not only overlap, but are altogether congruent.
The triads thus duplicate the measurement of winds blowing into the first
(Ti > 0) or into the third (7 < 0) quadrants, Record evaluation has to
look for either three positive or three negative transit times, The
ratio Q; and Qs are positive,

For winds arriving in the fourth and second quadrants, suitable
transit combinations are

CIIT d «—b, C «—>b, C «—a

C1v d «—b, d ¢«>a, C «—a,

They give rise to the solution systems

- s 1 .

Vi= 162 5, (N5 = Q1) T = Ty
s 1

< Vo = 1152 o (@5 AQp) o= TN, (49CTIT)
Ns 1
\OVs = 752 ™ (1 - Q1 - Q3 Ts = Ta,
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2 1 "

Vi =152 %2 (@5 - Q1) Ty = Ty
2As 1

V2= Th2 7, @ ) To = Ty, (49C1V)
2 1

V3 = 1+7\2 ?2_ (Ql + Q3 - 1) T3 = Tia

These triads minister to winds directed toward the fourth quadrant
(if 7y > 0), and toward the second quadrant (if t; < 0). They both
measure the same wind, if it is measurable at all.

For calculating the confines of the admissibility area we need
the path length and layer thickness expressions which again can be
unified and are valid for all four triads alike:

N@Q2 +Q3) + (1 - Qy - Q3)? tan®y
RY = 208 2 - , Q,=1,4i=1,2,3

i 102 Qy

(50)
an (2Q1 + 205 - 1 - 2Q;05)(Q1Q5 - QF - Q3)
(012 = ThHe o052
0:@% + 0@ f1 + L2U ranzy
Q] + Q5
h (2Q; + 205 - 1 - 2Q4Q%) (Q:Q5 - Q§ - Q1)
< 623 = 1+7\2 ; Q = (51)
0305 + 3 [1 + LD oy
Qe+ Qg
291t 205 - 1 - 2Q,Q3
031 = T2

2012042 ’
Qle /1 + Ml__ tan2\[;

Qf + Q5
where

As 2h
JTe T

tan v,
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have the numerical values adopted earlier. Assisted by the fact that
Q; and Qs are positive one demonstrates that, of these three distances,

Q
(|612[ is largest if Q5 - Q; < - 61 ,
3
: . Q5
< |855| 1is largest if Q5 - Q > (52)
1
Q, Q,
¢} is largest if - = < - <=2,
\] 31| arg i q, Qs - Q; o

As an application consider the case V5 =0 (Q; + Q3 = 1) where

o . 1 - 2Q, + 205
51 1+7‘2 Ql(l - Ql)

must be restricted, This function's minimum at Q, = 1/2 tells that

55y = 22.

The two restraining planes thus are always too far apart by our
standards, Horizontal winds cannot be measured with confidence. As
a consequence, the admissibility area (Figure 6) separates into two
parts, the upper and larger one valid for Q; + Qs > 1, the other one
for Q; + Q3 < 1.

An error analysis was carried out following the earlier pattern,
The worst errors likely to be encountered in the admissibility regions
were estimated as =~ 12 percent in speed, =~ 6 degrees in azimuth,
~ 8 degrees in elevation angle, The latter relatively large value was
found more or less throughout the realm Q; + Q3 < 1 (lower area), while
in the upper area AX ran up to at most =~ 4.5 degrees, which value is
more in line with the maximum obtained for the basic triads.* Con-
versely, the speed and azimuth error estimates attain their larger
values in the upper area, especially along the line Q, = Q. **

e
w

/X = 7 degrees was tolerated with the A-triads,

wlaats
W

This line again divides the areas into two symmetric halves,

54



The X-ranges safely measurable, regrettably, are not wider than
those amenable through the basic and A-triads. As before, they are
different with wind azimuth, For comparison we note that an azimuth
described by T when using triad I is associated with

when using CI or CII. On Figure 6, therefore, a given azimuth resides
along the lines

O

=& = I = const,
Q, "2

which, when cutting through the admissibility area, define the terminal
values of the X-range as those pertaining to their points of inter-
section with the area boundaries, For this reason, there are two dif-
ferent upper values depending on whether V5 is larger or smaller than
zero., The two lower values, however, were found to coincide (as can
be shown they must), In Table V, CI and CII-transits are considered
for azimuths which are also monitored by triad I transits. It is
representative as well for the ranges that can be attained with winds
arriving from the other lateral directions.

TABLE V

Elevation Angle Ranges Measurable by Triads CI and CIIT

T 1 1.5 2 3 4 5 6

x° 17.4 | 14,8 | 14,0 | 15,5 | 17.4 | 18,9 | 20.1

x>

{VB >0 27,0 | 28,3 | 28,6 | 28,0 | 27.0 | 26.1 25.4

Vs <0 | 32,2 | 29.3 | 28.6 | 29.9 | 32,2 32,3 | 25.4

Comparison with Table IV (where the entry D is equivalent to the

entry
01
T{=2=—
< 03
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in Table V) shows that no improvement of the upper bounds has been
achieved. Moreover, the lower bounds are all larger than those found
with AI-transits.

Almost the entire admissibility area is enclosed between the lines

O
-

1
and —= =
= 3

,oro
W =
t
w

By both the sets (49CI) and (49CII)

tan g = —2——
AL 4
Q>

Since the function at right increases with Q,/Qs, the permissible
¢-variation runs from a value something smaller than 17 degrees to a
value smaller than 72 degrees. (Analogous results apply regarding the
three other quadrants),

On the whole, the C-group is thus less effective than the two
others, but it can serve as a checking group for winds within speci-
fied X~ and @-ranges. To evaluate it seems advisable when such winds
have been shown present through basic or A-triads,

Some eddy tracks, among them horizontal ones with ¢ ~ 0 (180°) or
@ ~ 90° (270°) azimuths, remain accessible through one solitary triad
only, However, double and multiple observations are feasible of many
wind vectors. As a striking example, take

Tab 25 "be 6, Ted 6, Tda 1.2,
i _ * =
Tac 6, "bd 3.

These six times describe all transits realizable in a four-beam configura-
tion and satisfy the symmetry relations (11) as they must do theoretically.
The double-letter and number indices correlations lead to the values of

Q; and Qs pertinent to the several triads®; they are found admissible

with not less than seven of them:

* . &% o
Sometimes one is to recall that ¢ = -7° .
nm mn
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I and II (supplementary area)

III and IV (main area including horizontal wind points)

AITI
CIII and CIV,

If, in an ideal case, the six values were actually observed, they would
seven times yield the same solutions;:

1 Xs
Vl =-§ 1+?\2 (2 - 7\)
1 s
Vo = - 3 T2 (1 + 2)) (53)
v 12 M __2_A
37 5 3 14+N2 3 14+N°

This wind is directed toward the second quadrant with an azimuth
defined by

1+ 2\ 1 o
tan ¢ = - 55— < - 3 (p < 153°),

Its elevation is

tan X = L (X =~ 24,1°),
5

As follows from the position vectors (6) computed with solutions
(53), all connection terminals are above ground in the present instance,
It might happen on occasion that one or two are not, Such an eddy track,
though geometrically existing, is physically incomplete; no transit time
will be registered, However, multiple observation may yet provide a
triad through which the measurement can be made.
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XI, REFERENCE HEIGHT. HOMOLOGOUS BEAM SYSTEMS

Selection of the height h determines the value of A (by the first
of the formulas (37)) and that of s (by formula (39)), It completes
the gspecifications for the beam configuration and, for any V measured,
finally permits us to say, by the tips of the position vectors (6),
where the observed wind had been blowing.

The need for overlapping ¢q-ranges of horizontal winds dictates a
lower h-threshold, The upper bound (35) on A would place it at h ~ 47 mn,
but need not be upheld any more., As far as was known at the time of its
introduction, the azimuth range of horizontal winds detectable by triad I
transits began at a value slightly below 0° and had to extend to 45° to
secure overlapping with the analogous ¢-range of triad II, Based in part
on this conception, definite figures were eventually reached for the
parameters essential in computing the admissibility area which display
a considerably wider interval of T-values admissible at D = O than at the
outset could have been known to exist, It runs from T = -0,529 to
T = 3.438 (Tables I and II). Trial calculations revealed that, in virtue
of that broad range, the original limit A = 1 can be restored without
creating gaps between succeeding p-sectors. The necessary T- and ¢-rela-
tions follow from the solutions (23)." If, e.g., we choose A = 0.6, the
¢p-ranges for admissible horizontal winds are

with triad I: -45,8° ,.. 26.5°

with triad IT: -0.8° ... 73.9°

with triad III: 44,2° ,,, 116,5°

with triad IV: 89.2° ,.. 163,9°.

Overlapping takes place over sectors embracing somewhat less than 30°,
The entire @-range covered is 209,7°, well above the figure of 180° that
is required to measure horizontal winds around the rose. The range
allotted to a single triad is more than 70°, a sweep considerably larger
than the 45°-compass originally envisaged.

Taking A = 0.6 implies that one wishes to measure near the refer-
ence height

“Two of them have been quoted as the formulas (30) and (31).
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The parameter value (39) yields the detector distance from the origin,

The beam direction cosines are given by the system (2) where cotg § = 2
and, from formulas (13),

The beam arrangement can then be set out.

The smallest, not really attainable observation height (A = 1) is
h = 22 m. If one intends to measure below it, the basic figure 11 for
the parameter combination (37) must be lowered entailing a change in
the admissibility areas which must be computed guided by the same view
points as before ("hpmologous' areas), If one keeps the maximum path
length R at 154 m, the elevation angle y will also be different,

Relation (28) simplifies into

cotg . (54)

For practical reasons one would not wish the distance s to grow too
large, so that h is also subjected to some upper threshold, With the
present configuration, if A = 0,1, h ~ 110 m, s ~ 220 m, Furthermore,
the value of A could not be lowered indefinitely lest the beams,
actually of finite width, intersect in their outer fringes and thus
impair the soundness of the measurement, To check into this question,
consider that, by relation (54), the half diagonal length of the square
aloft is

As =~ Mh cotg ¥

meaning that its side is of order 2)h, or 22 m in our case, quite
irrespective of observation height. The danger for thé cross sections
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of the (slightly conical) beams to become as wide as that will probably
not be encountered till one reaches into rather large heights indeed,
Perhaps it can be abated yet by improving on the optical arrangement,®

In some measure the length s can be held down by decreasing cotg
which can be accomplished both by raising R and the limit for the 5.
Let us turn matters around, startlng out with demanding that cotg y =
J—** be substituted for cotg ¥ = 2, If in addition we acknowledge

= 180 m (for 154 m) as the 1argest admissible path length, equation
(33) yields the wvalue

T%%ﬁ = 14,05,

Expression (36) describes the variation of the cross distance $,, along
D= 0, i.e., when horizontal winds are present, 1If we retain 16 m as
its upper limit, we find that, when A = 0,03, T may move between the
values =0,22 and 2,5 which, with the triad I azimuths (30), correspond
to ¢y = -8° and @y = 49.6°. Since the sectors amenable to the three
remaining triads are probably of similar width (57.6°), one can hope
that the four together cover (at least) half of the rose without gap.
If actual computation shows that this is not so, one would have to
raise the limit on 3,5, because this widens the T-range, and conse-
quently the ¢-ranges of horizontal winds,

With A = 0,03,

_ 14,05 _
h = 35503 = 468 m,

h cotg ¢ = 468 /2 = 662 m.

[}
[

With A = 0,03 and the former value, cotg y =

h=—%= 367 m, s = 2h = 734 m,

A long sleeve or tube pulled over an objective, for example, is cutting
out some of the side light,

Fek
This is the smallest value still making it reasonably certain that the

minimum of the path R% is encountered on the curve R‘ = R, Were it
otherwise, the validity of equation (33) should be questloned.
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The improvement is evident.® The admissibility area and error esti~-
mate computations can employ the text relations with the new inputs

A
L+AZ

R = 180 m, = 14,05, cotg y =+/2.

The area on Figure 3, conceivably, will turn out narrower with this
homologous system; the lesser scope of T-values on D = 0 may set the
trend. The diminished magnitude of cotg { in general should allow
higher X-figures, although it could be that the opposite is true with
basic triads when D is small,

In dealing with the original system it was preferred not to enforce
a value of the beam elevation (as was done just now); instead, a way was
sought which would lead to a suitable figure for cotg ¥ out of the
infinitely many that could be proposed, The outcome was a beam con-
figuration that can be used with early experimentation operating at
heights, say, between 25 m and 300 m,

XII. CONCLUSION

While it has been shown in the foregoing that, notwithstanding the
delicate interplay of a number of competing conditions, beam systems
can be worked out to answer immediate needs, the full capabilities of
the square arrangement have not yet been explored. The so-called
cyclic triads in particular have not been tried when Q,; and Qs are of
unequal signs, and the negative results obtained in this respect with
auxiliary and controlling triads, while correct, may have overlooked
favorable situations. After all, it seems odd that the basic triads
alone should allow for such opposite signs, Furthermore, scant atten-
tion has been given to transit combinations where both Q, and Q5 are
negative, The little that has been done here was kept in the notes,
because, as far as the study went, one of the path length or cross
distance conditions was always violated,

*

The lowest value barely attainable (A = 1) is now h = 28,1 m (instead
of 22 m), The altered beam system was geared to measure at larger
heights (by upping the value acceptable for the length R).
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These questions, given sufficient time, can all be resolved within
the framework of the present methods. Some modifications (minor or
perhaps major) are foreseen when tackling two further problems also
related to that of the present paper.

In the first place, winds with a strong vertical component so far
escape detection. If there is a need for it in some quarters, means
should be found to satisfy it. The task is tempting in itself, because
apparently conventional meteorological experimentation is inadequately
equipped to obtain information on the vertical component.

Secondly, detectors are available that can receive several beams
simul taneously., 1In using them the number of transit combinations is
apt to grow very large indeed, especially if there are two or more
installed in the square arrangement., Also, the symmetry advantages
will be more or less lost. On the other hand, one can operate simul-
taneously in neighboring regions, possibly even at markedly different
heights, thus determining a wind profile. Whether or not omission of one
single-beam detector is permissible without destroying the flexibility
of the system should be among the first questions to be answered,

The long-standing proposal of measuring winds by mounting two
detectors, at least one of them multiple, on an airplane flying
horizontally at constant speed introduces an additional parameter
and a vastly changed situation which is not purely geometric, but
kinematic as well, The argument includes elements foreign to those
used so far, and the problem would therefore seem to call for a fresh
approach which, though heeding the same fundamental restraints, should
end up with a methodological and computational scheme quite different
in detail,
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